Django-Chartit

Documentation Status https://travis-ci.org/chartit/django-chartit.svg?branch=master Code Health https://coveralls.io/repos/github/chartit/django-chartit/badge.svg?branch=master

Django Chartit is a Django app that can be used to easily create charts from the data in your database. The charts are rendered using Highcharts and jQuery JavaScript libraries. Data in your database can be plotted as simple line charts, column charts, area charts, scatter plots, and many more chart types. Data can also be plotted as Pivot Charts where the data is grouped and/or pivoted by specific column(s).

Changelog

  • 0.2.9 (January 17, 2017)
    • Enable pylint during testing but don’t block Travis-CI on failures. Closes #42.
    • Handle unicode data in pie and scatter plot charts under Python 2.7. PR#47.
  • 0.2.8 (December 4, 2016)
    • PivotChart and PivotDataPool will be deprecated soon. Both are marked with deprecation warnings. There is a lot of duplication and special handling between those classes and the Chart and DataPool classes which make it harder to expand the feature set for django-chartit. The next release will focus on consolidating all the functionality into Chart and DataPool so that users will still be able to draw pivot charts. You will have to construct your pivot charts manually though!
    • DataPool terms now supports model properties. Fixes #35. Model properties are not supported for PivotDataPool! WARNING: when using model properties chartit can’t make use of ``QuerySet.values()`` internally. This means results will not be groupped by the values of the fields you supplied. This may lead to unexpected query results/charts!
    • DataPool now supports RawQuerySet as data source. Fixes #44. RawQuerySet is not supported for PivotDataPool! WARNING: when using ``RawQuerySet`` don’t use double underscores in field names because these are interpreted internally by chartit and will cause exceptions. For example don’t do this ``SELECT AVG(rating) as rating__avg`` instead write it as ``SELECT AVG(rating) as rating_avg``!
    • README now tells how to execute demoproject/
  • 0.2.7 (September 14, 2016)
    • Don’t use super(self.__class__) b/c that breaks chart class inheritance. Fixes #41
  • 0.2.6 (August 16, 2016)
    • Merge chartit_tests/ with demoproject/
    • Load test DB with real data to use during testing
    • Add more tests
    • Update the path to demoproject.settings when building docs. Fixes a problem which caused some API docs to be empty
    • Fix ValueError: not enough values to unpack (expected 2, got 0) with PivotChart when the QuerySet returns empty data
    • Dropped requirement on simplejson
    • Properly handle unicode data in Pivot charts. Fixes #5
    • Demo project updated with Chart and PivotChart examples of rendering DateField values on the X axis
    • Allow charting of extra() or annotate() fields. Fixes #8 and #12
    • Refactor RecursiveDefaultDict to allow chart objects to be serialized to/from cache. Fixes #10
    • Add information about supported 3rd party JavaScript versions. Fixes #14
  • 0.2.5 (August 3, 2016)
    • Workaround Python 3 vs. Python 2 list sort issue which breaks charts with multiple data sources displayed on the same axis!
    • Make demoproject/ compatible with Django 1.10
  • 0.2.4 (August 2, 2016)
    • Fix for get_all_field_names() and get_field_by_name() removal in Django 1.10. Fixes #39
    • Updated for django.db.sql.query.Query.aggregates removal
  • 0.2.3 (July 30, 2016)
    • New to_json() method for charts. Useful for creating Highcharts in AJAX
    • Merged with django-chartit2 fork by Grant McConnaughey which adds Python 3 and latest Django 1.8.x and 1.9.x support
    • Allow dictionary fields in conjunction with lambda fields. Closes #26
    • Documentation improvements
    • Lots of code cleanups and style improvements
  • 0.2.2 as django-chartit2 (January 28, 2016)
    • Fixed another issue that prevented installation via PyPI
  • 0.2.0 as django-chartit2 (January 20, 2016):
    • Fixed issue that could prevent installation via PyPI
  • 0.1 (November 5, 2011)
    • Initial release of django-chartit

Features

  • Plot charts from models.
  • Plot data from multiple models on the same axis on a chart.
  • Plot pivot charts from models. Data can be pivoted by across multiple columns.
  • Legend pivot charts by multiple columns.
  • Combine data from multiple models to plot on same pivot charts.
  • Plot a pareto chart, paretoed by a specific column.
  • Plot only a top few items per category in a pivot chart.
  • Python 3 compatibility
  • Django 1.8 and 1.9 compatibility
  • Documentation to ReadTheDocs
  • Automated testing via Travis CI
  • Test coverage tracking via Coveralls

Installation

You can install Django-Chartit from PyPI. Just do

$ pip install django_chartit

Then, add chartit to INSTALLED_APPS in “settings.py”.

You also need supporting JavaScript libraries. See the Required JavaScript Libraries section for more details.

How to Use

Plotting a chart or pivot chart on a webpage involves the following steps.

  1. Create a DataPool or PivotDataPool object that specifies what data you need to retrieve and from where.
  2. Create a Chart or PivotChart object to plot the data in the DataPool or PivotDataPool respectively.
  3. Return the Chart/PivotChart object from a django view function to the django template.
  4. Use the load_charts template tag to load the charts to HTML tags with specific ids.

It is easier to explain the steps above with examples. So read on.

How to Create Charts

Here is a short example of how to create a line chart. Let’s say we have a simple model with 3 fields - one for month and two for temperatures of Boston and Houston.

class MonthlyWeatherByCity(models.Model):
    month = models.IntegerField()
    boston_temp = models.DecimalField(max_digits=5, decimal_places=1)
    houston_temp = models.DecimalField(max_digits=5, decimal_places=1)

And let’s say we want to create a simple line chart of month on the x-axis and the temperatures of the two cities on the y-axis.

from chartit import DataPool, Chart

def weather_chart_view(request):
    #Step 1: Create a DataPool with the data we want to retrieve.
    weatherdata = \
        DataPool(
           series=
            [{'options': {
               'source': MonthlyWeatherByCity.objects.all()},
              'terms': [
                'month',
                'houston_temp',
                'boston_temp']}
             ])

    #Step 2: Create the Chart object
    cht = Chart(
            datasource = weatherdata,
            series_options =
              [{'options':{
                  'type': 'line',
                  'stacking': False},
                'terms':{
                  'month': [
                    'boston_temp',
                    'houston_temp']
                  }}],
            chart_options =
              {'title': {
                   'text': 'Weather Data of Boston and Houston'},
               'xAxis': {
                    'title': {
                       'text': 'Month number'}}})

    #Step 3: Send the chart object to the template.
    return render_to_response({'weatherchart': cht})

And you can use the load_charts filter in the django template to render the chart.

<head>
    <!-- code to include the highcharts and jQuery libraries goes here -->
    <!-- load_charts filter takes a comma-separated list of id's where -->
    <!-- the charts need to be rendered to                             -->
    {% load chartit %}
    {{ weatherchart|load_charts:"container" }}
</head>
<body>
    <div id='container'> Chart will be rendered here </div>
</body>

How to Create Pivot Charts

Here is an example of how to create a pivot chart. Let’s say we have the following model.

class DailyWeather(models.Model):
    month = models.IntegerField()
    day = models.IntegerField()
    temperature = models.DecimalField(max_digits=5, decimal_places=1)
    rainfall = models.DecimalField(max_digits=5, decimal_places=1)
    city = models.CharField(max_length=50)
    state = models.CharField(max_length=2)

We want to plot a pivot chart of month (along the x-axis) versus the average rainfall (along the y-axis) of the top 3 cities with highest average rainfall in each month.

from django.db.models import Avg
from chartit import PivotDataPool, PivotChart

def rainfall_pivot_chart_view(request):
    # Step 1: Create a PivotDataPool with the data we want to retrieve.
    rainpivotdata = PivotDataPool(
        series=[{
            'options': {
                'source': DailyWeather.objects.all(),
                'categories': ['month'],
                'legend_by': 'city',
                'top_n_per_cat': 3,
            },
            'terms': {
                'avg_rain': Avg('rainfall'),
            }
        }]
    )

    # Step 2: Create the PivotChart object
    rainpivcht = PivotChart(
        datasource=rainpivotdata,
        series_options=[{
            'options': {
                'type': 'column',
                'stacking': True
            },
            'terms': ['avg_rain']
        }],
        chart_options={
            'title': {
                'text': 'Rain by Month in top 3 cities'
            },
            'xAxis': {
                'title': {
                    'text': 'Month'
                }
            }
        }
    )

    # Step 3: Send the PivotChart object to the template.
    return render_to_response({'rainpivchart': rainpivcht})

And you can use the load_charts filter in the django template to render the chart.

<head>
    <!-- code to include the highcharts and jQuery libraries goes here -->
    <!-- load_charts filter takes a comma-separated list of id's where -->
    <!-- the charts need to be rendered to                             -->
    {% load chartit %}
    {{ rainpivchart|load_charts:"container" }}
</head>
<body>
    <div id='container'> Chart will be rendered here </div>
</body>

Rendering multiple charts

It is possible to render multiple charts in the same template. The first argument to load_charts is the Chart object or a list of Chart objects, and the second is a comma separated list of HTML IDs where the charts will be rendered.

When calling Django’s render you have to pass all you charts as a list:

return render(request, 'index.html',
             {
                'chart_list' : [chart_1, chart_2],
             }
        )

Then in your template you have to use the proper syntax:

<head>
    {% load chartit %}
    {{ chart_list|load_charts:"chart_1,chart_2" }}
</head>
<body>
    <div id="chart_1">First chart will be rendered here</div>
    <div id="chart_2">Second chart will be rendered here</div>
</body>

Demo

The above examples are just a brief taste of what you can do with Django-Chartit. For more examples and to look at the charts in actions, check out the demoproject/ directory. To execute the demo run the commands

cd demoproject/
PYTHONPATH=../ python ./manage.py migrate
PYTHONPATH=../ python ./manage.py runserver

Documentation

Full documentation is available here .

Required JavaScript Libraries

The following JavaScript Libraries are required for using Django-Chartit.

  • jQuery - versions 1.6.4 and 1.7 are known to work well with django-chartit.
  • Highcharts - versions 2.1.7 and 2.2.0 are known to work well with django-chartit.

Note

While Django-Chartit itself is licensed under the BSD license, Highcharts is licensed under the Highcharts license and jQuery is licensed under both MIT License and GNU General Public License (GPL) Version 2. It is your own responsibility to abide by respective licenses when downloading and using the supporting JavaScript libraries.

Quick API Reference

API Reference

How to retrieve data

DataPool
DataPool.__init__(series)

Create a DataPool object as specified by the series.

Arguments:
  • series (list of dict) - specifies the what data to retrieve and where to retrieve it from. It is of the form

    [{'options': {
       'source': a django model, Manager or QuerySet,
       },
     'terms': [
       'a_valid_field_name', ... ,
       {'any_name': 'a_valid_field_name', ... },
       ]
    },
    ...
    ]
    

    Where

    • options (required) - a dict. Any of the series options for the Highcharts options object are valid.
    • terms - is a list. Each element in terms is either
      1. a str - needs to be a valid model field for the corresponding source, or
      2. a dict - need to be of the form {'any_name': 'a_valid_field_name', ...}.

    To retrieve data from multiple models or QuerySets, just add more dictionaries with the corresponding options and terms.

Raises:
  • APIInputError - sif the series argument has any invalid parameters.

Warning

All elements in terms must be unique across all the dictionaries in the series list. If there are two terms with same name, the latter one is going to overwrite the one before it.

For example, the following is wrong:

[{'options': {
    'source': SomeModel},
  'terms':[
    'foo',
    'bar']},
 {'options': {
    'source': OtherModel},
  'terms':[
    'foo']}]

In this case, the term foo from OtherModel is going to overwrite foo from SomeModel.

Here is the right way of retrieving data from two different models both of which have the same field name.

[{'options': {
   'source': SomeModel},
  'terms':[
    'foo',
    'bar']},
 {'options': {
   'source': OtherModel},
  'terms':[
    {'foo_2': 'foo'}]}]
PivotDataPool
PivotDataPool.__init__(series, top_n_term=None, top_n=None, pareto_term=None, sortf_mapf_mts=None)

Creates a PivotDataPool object.

Arguments:
  • series (required) - a list of dicts that specifies the what data to retrieve, where to retrieve it from and how to pivot the data. It is of the form

    [{'options': {
        'source': django Model, Manager or QuerySet ,
        'categories': ['a_valid_field', ...],
        'legend_by': ['a_valid_field', ...] (optional),
        'top_n_per_cat': a number (optional),
      },
      'terms': {
        'any_name_here': django Aggregate,
        'some_other_name':{
          'func': django Aggregate,
          #any options to override
          ...
        },
      ...
      }
     },
     ... #repeat dicts with 'options' & 'terms'
    ]
    

    Where

    • options - is a dict that specifies the common options for all the terms.

      • source (required) - is either a Model, Manager or a QuerySet.

      • categories (required) - is a list of model fields by which the data needs to be pivoted by. If there is only a single item, categories can just be a string instead of a list with single element.

        For example if you have a model with country, state, county, city, date, rainfall, temperature and you want to pivot the data by country and state, then categories = ['country', 'state'] .

        Note

        Order of elements in the categories list matters!

        categories = ['country', 'state'] groups your data first by country and then by state when running the SQL query. This obviously is not the same as grouping by state first and then by country.

      • legend_by (optional) - is a list of model fields by which the data needs to be legended by. For example, in the above case, if you want to legend by county and city, then legend_by = ['county', 'city']

        Note

        Order of elements in the legend_by list matters!

        See the note in categories above.

      • top_n_per_cat (optional) - The number of top items that the legended entries need to be limited to in each category. For example, in the above case, if you wanted only the top 3 county/cities with highest rainfall for each of the country/state, then top_n_per_cat = 3.

    • terms - is a dict. The keys can be any strings (but helps if they are meaningful aliases for the field). The values can either be

      • a django Aggregate : of a valid field in corresponding model. For example, Avg('temperature'), Sum('price'), etc. or
      • a dict: In this case the func must specify relevant django aggregate to retrieve. For example 'func': Avg('price'). The dict can also have any additional entries from the options dict. Any entries here will override the entries in the options dict.
  • top_n_term (optional) - a string. Must be one of the keys in the corresponding terms in the series argument.

  • top_n (optional) - an integer. The number of items for the corresponding top_n_term that need to be retained.

    If top_n_term and top_n are present, only the top_n numberof items are going to displayed in the pivot chart. For example, if you want to plot only the top 5 states with highest average rainfall, you can do something like this.

    PivotDataPool(
      series = [
         {'options': {
            'source': RainfallData.objects.all(),
            'categories': 'state'},
          'terms': {
            'avg_rain': Avg('rainfall')}}],
      top_n_term = 'avg_rain',
      top_n = 5)
    

    Note that the top_n_term is 'avg_rain' and not state; because we want to limit by the average rainfall.

  • pareto_term (optional) - the term with respect to which the pivot chart needs to be paretoed by.

    For example, if you want to plot the average rainfall on the y-axis w.r.t the state on the x-axis and want to pareto by the average rainfall, you can do something like this.

    PivotDataPool(
      series = [
         {'options': {
            'source': RainfallData.objects.all(),
            'categories': 'state'},
          'terms': {
            'avg_rain': Avg('rainfall')}}],
      pareto_term = 'avg_rain')
    
  • sortf_mapf_mts (optional) - a tuple with three elements of the form (sortf, mapf, mts) where

    • sortf - is a function (or a callable) that is used as a key when sorting the category values.

      For example, if categories = 'month_num' and if the months need to be sorted in reverse order, then sortf can be

      sortf = lambda *x: (-1*x[0],)
      

      Note

      sortf is passed the category values as tuples and must return tuples!

      If categories is ['city', 'state'] and if the category values returned need to be sorted with state first and then city, then sortf can be

      sortf = lambda *x: (x[1], x[0])
      

      The above sortf is passed tuples like ('San Francisco', 'CA'), ('New York', 'NY'), ... and it returns tuples like ('CA', 'San Francisco'), ('NY', 'New York'), ... which when used as keys to sort the category values will obviously first sort by state and then by city.

    • mapf - is a function (or a callable) that defines how the category values need to be mapped.

      For example, let’s say categories is 'month_num' and that the category values that are retrieved from your database are 1, 2, 3, etc. If you want month names as the category values instead of month numbers, you can define a mapf to transform the month numbers to month names like so

      def month_name(*t):
          names ={1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr',
                  5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug',
                  9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'}
          month_num = t[0]
          return (names[month_num], )
      
      mapf = month_name
      

      Note

      mapf like sortf is passed the category values as tuples and must return tuples.

    • mts - map then sort ; a bool. If True, the category values are mapped first and then sorted, and if False category values are sorted first and then mapped.

      In the above example of month names, we mts must be False because the months must first be sorted based on their number and then mapped to their names. If mts is True, the month numbers would be transformed to the month names, and then sorted, which would yield an order like Apr, Aug, Dec, etc. (not what we want).

Raises:
  • APIInputError - if the series argument has any invalid parameters.

Here is a full example of a series term that retrieves the average temperature of the top 3 cities in each country/state and the average rainfall of the top 2 cities in each country/state.

[{'options': {
    'source': Weather.objects.all(),
    'categories': ['country', 'state'],
    'legend_by': 'city',
    'top_n_per_cat': 3},
  'terms': {
    'avg_temp': Avg('temperature'),
    'avg_rain': {
      'func': Avg('rainfall'),
      'top_n_per_cat': 2}}}]

The 'top_n_per_cat': 2 term in avg_rain dict overrides 'top_n_per_cat': 5 from the comon options dict. Effectively, the above series retrieves the top 2 cities with highest avg_rain in each country/state and top 3 cities with highest avg_temp in each country/state.

A single PivotDataPool can hold data from multiple Models. If there are more models or QuerySets to retrieve the data from, just add more dicts to the series list with different source values.

Warning

The keys for the terms must be unique across all the dictionaries in the series list! If there are multiple terms with same key, the latter ones will just overwrite the previous ones.

For instance, the following example is wrong.

[{'options': {
    'source': EuropeWeather.objects.all(),
    'categories': ['country', 'state']},
  'terms': {
    'avg_temp': Avg('temperature')}},
 {'options': {
     'source': AsiaWeather.objects.all(),
     'categories': ['country', 'state']},
  'terms': {
    'avg_temp': Avg('temperature')}}]

The second avg_temp will overwrite the first one. Instead just use different names for each of the keys in all the dictionaries. Here is the right format.

[{'options': {
    'source': EuropeWeather.objects.all(),
    'categories': ['country', 'state']},
  'terms': {
    'europe_avg_temp': Avg('temperature')}},
 {'options': {
     'source': AsiaWeather.objects.all(),
     'categories': ['country', 'state']},
  'terms': {
    'asia_avg_temp': Avg('temperature')}}]

How to create the charts

Chart
Chart.__init__(datasource, series_options, chart_options=None, x_sortf_mapf_mts=None)

Chart accept the datasource and some options to create the chart and creates it.

Arguments:

  • datasource (required) - a DataPool object that holds the terms and other information to plot the chart from.

  • series_options (required) - specifies the options to plot the terms on the chart. It is of the form

    [{'options': {
        #any items from HighChart series. For ex.,
        'type': 'column'
       },
       'terms': {
         'x_name': ['y_name',
                    {'other_y_name': {
                       #overriding options}},
                    ...],
         ...
         },
       },
      ... #repeat dicts with 'options' & 'terms'
      ]
    

    Where -

    • options (required) - a dict. Any of the parameters from the Highcharts options object - series array are valid as entries in the options dict except data (because data array is generated from your datasource by chartit). For example, type, xAxis, etc. are all valid entries here.

      Note

      The items supplied in the options dict are not validated to make sure that Highcharts actually supports them. Any invalid options are just passed to Highcharts JS which silently ignores them.

    • terms (required) - a dict. keys are the x-axis terms and the values are lists of y-axis terms for that particular x-axis term. Both x-axis and y-axis terms must be present in the corresponding datasource, otherwise an APIInputError is raised.

      The entries in the y-axis terms list must either be a str or a dict. If entries are dicts, the keys need to be valid y-term names and the values need to be any options to override the default options. For example,

      [{'options': {
          'type': 'column',
          'yAxis': 0},
        'terms': {
          'city': [
            'temperature',
           {'rainfall': {
              'type': 'line',
              'yAxis': 1}}]}}]
      

      plots a column chart of city vs. temperature as a line chart on yAxis: 0 and city vs. rainfall as a line chart on yAxis: 1. This can alternatively be expressed as two separate entries:

      [{'options': {
          'type': 'column',
          'yAxis': 0},
        'terms': {
          'city': [
            'temperature']}},
       {'options': {
          'type': 'line',
          'yAxis': 1},
        'terms': {
          'city': [
            'rainfall']}}]
      
  • chart_options (optional) - a dict. Any of the options from the Highcharts options object are valid (except the options in the series array which are passed in the series_options argument. The following chart_options for example, set the chart title and the axes titles.

    {'chart': {
       'title': {
         'text': 'Weather Chart'}},
     'xAxis': {
       'title': 'month'},
     'yAxis': {
       'title': 'temperature'}}
    

    Note

    The items supplied in the chart_options dict are not validated to make sure that Highcharts actually supports them. Any invalid options are just passed to Highcharts JS which silently ignores them.

Raises:

  • APIInputError if any of the terms are not present in the corresponding datasource or if the series_options cannot be parsed.
PivotChart
PivotChart.__init__(datasource, series_options, chart_options=None)

Creates the PivotChart object.

Arguments:

  • datasource (required) - a PivotDataPool object that holds the terms and other information to plot the chart from.

  • series_options (required) - specifies the options to plot the terms on the chart. It is of the form

    [{'options': {
        #any items from HighChart series. For ex.
        'type': 'column'
        },
      'terms': [
        'a_valid_term',
        'other_valid_term': {
          #any options to override. For ex.
         'type': 'area',
          ...
          },
        ...
        ]
      },
      ... #repeat dicts with 'options' & 'terms'
      ]
    

    Where -

    • options (required) - a dict. Any of the parameters from the Highcharts options object - series array are valid as entries in the options dict except data (because data array is generated from your datasource by chartit). For example, type, xAxis, etc. are all valid entries here.

      Note

      The items supplied in the options dict are not validated to make sure that Highcharts actually supports them. Any invalid options are just passed to Highcharts JS which silently ignores them.

    • terms (required) - a list. Only terms that are present in the corresponding datasource are valid.

      Note

      All the terms are plotted on the y-axis. The categories of the datasource are plotted on the x-axis. There is no option to override this.

      Each of the terms must either be a str or a dict. If entries are dicts, the keys need to be valid terms and the values need to be any options to override the default options. For example,

      [{'options': {
          'type': 'column',
          'yAxis': 0},
        'terms': [
          'temperature',
          {'rainfall': {
              'type': 'line',
              'yAxis': 1}}]}]
      

      plots a pivot column chart of temperature on yAxis: 0 and a line pivot chart of rainfall on yAxis: 1. This can alternatively be expressed as two separate entries:

      [{'options': {
          'type': 'column',
          'yAxis': 0},
        'terms': [
            'temperature']},
       {'options': {
          'type': 'line',
          'yAxis': 1},
        'terms': [
            'rainfall']}]
      
  • chart_options (optional) - a dict. Any of the options from the Highcharts options object are valid (except the options in the series array which are passed in the series_options argument. The following chart_options for example, set the chart title and the axes titles.

    {'chart': {
       'title': {
         'text': 'Weather Chart'}},
     'xAxis': {
       'title': 'month'},
     'yAxis': {
       'title': 'temperature'}}
    

    Note

    The items supplied in the chart_options dict are not validated to make sure that Highcharts actually supports them. Any invalid options are just passed to Highcharts JS which silently ignores them.

Raises:

  • APIInputError if any of the terms are not present in the corresponding datasource or if the series_options cannot be parsed.

How to use chartit django template filters

chartit.templatetags.chartit.load_charts(chart_list=None, render_to='')

Loads the Chart/PivotChart objects in the chart_list to the HTML elements with id’s specified in render_to.

Arguments:
  • chart_list - a list of Chart/PivotChart objects. If there is just a single element, the Chart/PivotChart object can be passed directly instead of a list with a single element.

  • render_to - a comma separated string of HTML element id’s where the charts needs to be rendered to. If the element id of a specific chart is already defined during the chart creation, the render_to for that specific chart can be an empty string or a space.

    For example, render_to = 'container1, , container3' renders three charts to three locations in the HTML page. The first one will be rendered in the HTML element with id container1, the second one to it’s default location that was specified in chart_options when the Chart/PivotChart object was created, and the third one in the element with id container3.

Returns:
  • a JSON array of the HighCharts Chart options. Also returns a link to the chartloader.js javascript file to be embedded in the webpage. The chartloader.js has a jQuery script that renders a HighChart for each of the options in the JSON array

Quick Reference for series and series_options

PivotDataPool series PivotChart series_options
[{'options': {
    'source': SomeModel.objects.all(),
    'top_n_per_cat': 10, ...
    }
  'terms': {
    'any_name_here': Sum('a_valid_field'),
    'some_other_name':{
      'func': Avg('a_valid_field),
      #any options to override
      ...
      },
    ...
    }
 },
 ... #repeat dicts with 'options' & 'terms'
 ]
[{'options': {
    #any items from HighChart series. For ex.
    'type': 'column'
    },
  'terms': [
    'a_valid_term',
    'other_valid_term': {
      #any options to override. For ex.
      'type': 'area',
      ...
      },
    ...
    ]
  },
  ... #repeat dicts with 'options' & 'terms'
  ]
DataPool series Chart series_options
[{'options': {
    'source': SomeModel.objects.all(),

    }
  'terms': [
    'a_valid_field_name',
    ..., # more valid field names
    {'any_name': 'a_valid_field_name',
     ... # more name:field_name pairs
     },
    ]
 },
 ... #repeat dicts with 'options' & 'terms'
 ]
[{'options': {
    #any items from HighChart series. For ex.
    'type': 'column'
    },
  'terms': {
    'x_name': ['y_name', 'y_name', ...],
    # only corresponding keys from DataPool
    # terms are valid names.
    ...

    }
  },
  ... #repeat dicts with 'options' & 'terms'
  ]

Full module documentation

chartit

chartit package

Subpackages
chartit.highcharts package
Submodules
chartit.highcharts.hcoptions module
Module contents
chartit.templatetags package
Submodules
chartit.templatetags.chartit module

Implements the {% load_charts %} template tag!

chartit.templatetags.chartit.json_serializer(obj)

Return JSON representation of some special data types.

chartit.templatetags.chartit.load_charts(chart_list=None, render_to='')

Loads the Chart/PivotChart objects in the chart_list to the HTML elements with id’s specified in render_to.

Arguments:
  • chart_list - a list of Chart/PivotChart objects. If there is just a single element, the Chart/PivotChart object can be passed directly instead of a list with a single element.

  • render_to - a comma separated string of HTML element id’s where the charts needs to be rendered to. If the element id of a specific chart is already defined during the chart creation, the render_to for that specific chart can be an empty string or a space.

    For example, render_to = 'container1, , container3' renders three charts to three locations in the HTML page. The first one will be rendered in the HTML element with id container1, the second one to it’s default location that was specified in chart_options when the Chart/PivotChart object was created, and the third one in the element with id container3.

Returns:
  • a JSON array of the HighCharts Chart options. Also returns a link to the chartloader.js javascript file to be embedded in the webpage. The chartloader.js has a jQuery script that renders a HighChart for each of the options in the JSON array
Module contents
Submodules
chartit.chartdata module
class chartit.chartdata.DataPool(series)

Bases: object

DataPool holds the data retrieved from various models (tables).

__dict__ = mappingproxy({'__dict__': <attribute '__dict__' of 'DataPool' objects>, '__weakref__': <attribute '__weakref__' of 'DataPool' objects>, '__doc__': 'DataPool holds the data retrieved from various models (tables).', '_get_data': <function DataPool._get_data>, '_group_terms_by_query': <function DataPool._group_terms_by_query>, '__init__': <function DataPool.__init__>, '_generate_vqs': <function DataPool._generate_vqs>, '__module__': 'chartit.chartdata'})
__init__(series)

Create a DataPool object as specified by the series.

Arguments:
  • series (list of dict) - specifies the what data to retrieve and where to retrieve it from. It is of the form

    [{'options': {
       'source': a django model, Manager or QuerySet,
       },
     'terms': [
       'a_valid_field_name', ... ,
       {'any_name': 'a_valid_field_name', ... },
       ]
    },
    ...
    ]
    

    Where

    • options (required) - a dict. Any of the series options for the Highcharts options object are valid.
    • terms - is a list. Each element in terms is either
      1. a str - needs to be a valid model field for the corresponding source, or
      2. a dict - need to be of the form {'any_name': 'a_valid_field_name', ...}.

    To retrieve data from multiple models or QuerySets, just add more dictionaries with the corresponding options and terms.

Raises:
  • APIInputError - sif the series argument has any invalid parameters.

Warning

All elements in terms must be unique across all the dictionaries in the series list. If there are two terms with same name, the latter one is going to overwrite the one before it.

For example, the following is wrong:

[{'options': {
    'source': SomeModel},
  'terms':[
    'foo',
    'bar']},
 {'options': {
    'source': OtherModel},
  'terms':[
    'foo']}]

In this case, the term foo from OtherModel is going to overwrite foo from SomeModel.

Here is the right way of retrieving data from two different models both of which have the same field name.

[{'options': {
   'source': SomeModel},
  'terms':[
    'foo',
    'bar']},
 {'options': {
   'source': OtherModel},
  'terms':[
    {'foo_2': 'foo'}]}]
__module__ = 'chartit.chartdata'
__weakref__

list of weak references to the object (if defined)

_generate_vqs()
_get_data()
_group_terms_by_query(sort_by_term=None, *addl_grp_terms)

Groups all the terms that can be extracted in a single query. This reduces the number of database calls.

Returns:
  • a list of sub-lists where each sub-list has items that can all be retrieved with the same query (i.e. terms from the same source and any additional criteria as specified in addl_grp_terms).
class chartit.chartdata.PivotDataPool(series, top_n_term=None, top_n=None, pareto_term=None, sortf_mapf_mts=None)

Bases: chartit.chartdata.DataPool

PivotDataPool holds the data retrieved from various tables (models) and then pivoted against the category fields.

__init__(series, top_n_term=None, top_n=None, pareto_term=None, sortf_mapf_mts=None)

Creates a PivotDataPool object.

Arguments:
  • series (required) - a list of dicts that specifies the what data to retrieve, where to retrieve it from and how to pivot the data. It is of the form

    [{'options': {
        'source': django Model, Manager or QuerySet ,
        'categories': ['a_valid_field', ...],
        'legend_by': ['a_valid_field', ...] (optional),
        'top_n_per_cat': a number (optional),
      },
      'terms': {
        'any_name_here': django Aggregate,
        'some_other_name':{
          'func': django Aggregate,
          #any options to override
          ...
        },
      ...
      }
     },
     ... #repeat dicts with 'options' & 'terms'
    ]
    

    Where

    • options - is a dict that specifies the common options for all the terms.

      • source (required) - is either a Model, Manager or a QuerySet.

      • categories (required) - is a list of model fields by which the data needs to be pivoted by. If there is only a single item, categories can just be a string instead of a list with single element.

        For example if you have a model with country, state, county, city, date, rainfall, temperature and you want to pivot the data by country and state, then categories = ['country', 'state'] .

        Note

        Order of elements in the categories list matters!

        categories = ['country', 'state'] groups your data first by country and then by state when running the SQL query. This obviously is not the same as grouping by state first and then by country.

      • legend_by (optional) - is a list of model fields by which the data needs to be legended by. For example, in the above case, if you want to legend by county and city, then legend_by = ['county', 'city']

        Note

        Order of elements in the legend_by list matters!

        See the note in categories above.

      • top_n_per_cat (optional) - The number of top items that the legended entries need to be limited to in each category. For example, in the above case, if you wanted only the top 3 county/cities with highest rainfall for each of the country/state, then top_n_per_cat = 3.

    • terms - is a dict. The keys can be any strings (but helps if they are meaningful aliases for the field). The values can either be

      • a django Aggregate : of a valid field in corresponding model. For example, Avg('temperature'), Sum('price'), etc. or
      • a dict: In this case the func must specify relevant django aggregate to retrieve. For example 'func': Avg('price'). The dict can also have any additional entries from the options dict. Any entries here will override the entries in the options dict.
  • top_n_term (optional) - a string. Must be one of the keys in the corresponding terms in the series argument.

  • top_n (optional) - an integer. The number of items for the corresponding top_n_term that need to be retained.

    If top_n_term and top_n are present, only the top_n numberof items are going to displayed in the pivot chart. For example, if you want to plot only the top 5 states with highest average rainfall, you can do something like this.

    PivotDataPool(
      series = [
         {'options': {
            'source': RainfallData.objects.all(),
            'categories': 'state'},
          'terms': {
            'avg_rain': Avg('rainfall')}}],
      top_n_term = 'avg_rain',
      top_n = 5)
    

    Note that the top_n_term is 'avg_rain' and not state; because we want to limit by the average rainfall.

  • pareto_term (optional) - the term with respect to which the pivot chart needs to be paretoed by.

    For example, if you want to plot the average rainfall on the y-axis w.r.t the state on the x-axis and want to pareto by the average rainfall, you can do something like this.

    PivotDataPool(
      series = [
         {'options': {
            'source': RainfallData.objects.all(),
            'categories': 'state'},
          'terms': {
            'avg_rain': Avg('rainfall')}}],
      pareto_term = 'avg_rain')
    
  • sortf_mapf_mts (optional) - a tuple with three elements of the form (sortf, mapf, mts) where

    • sortf - is a function (or a callable) that is used as a key when sorting the category values.

      For example, if categories = 'month_num' and if the months need to be sorted in reverse order, then sortf can be

      sortf = lambda *x: (-1*x[0],)
      

      Note

      sortf is passed the category values as tuples and must return tuples!

      If categories is ['city', 'state'] and if the category values returned need to be sorted with state first and then city, then sortf can be

      sortf = lambda *x: (x[1], x[0])
      

      The above sortf is passed tuples like ('San Francisco', 'CA'), ('New York', 'NY'), ... and it returns tuples like ('CA', 'San Francisco'), ('NY', 'New York'), ... which when used as keys to sort the category values will obviously first sort by state and then by city.

    • mapf - is a function (or a callable) that defines how the category values need to be mapped.

      For example, let’s say categories is 'month_num' and that the category values that are retrieved from your database are 1, 2, 3, etc. If you want month names as the category values instead of month numbers, you can define a mapf to transform the month numbers to month names like so

      def month_name(*t):
          names ={1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr',
                  5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug',
                  9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'}
          month_num = t[0]
          return (names[month_num], )
      
      mapf = month_name
      

      Note

      mapf like sortf is passed the category values as tuples and must return tuples.

    • mts - map then sort ; a bool. If True, the category values are mapped first and then sorted, and if False category values are sorted first and then mapped.

      In the above example of month names, we mts must be False because the months must first be sorted based on their number and then mapped to their names. If mts is True, the month numbers would be transformed to the month names, and then sorted, which would yield an order like Apr, Aug, Dec, etc. (not what we want).

Raises:
  • APIInputError - if the series argument has any invalid parameters.

Here is a full example of a series term that retrieves the average temperature of the top 3 cities in each country/state and the average rainfall of the top 2 cities in each country/state.

[{'options': {
    'source': Weather.objects.all(),
    'categories': ['country', 'state'],
    'legend_by': 'city',
    'top_n_per_cat': 3},
  'terms': {
    'avg_temp': Avg('temperature'),
    'avg_rain': {
      'func': Avg('rainfall'),
      'top_n_per_cat': 2}}}]

The 'top_n_per_cat': 2 term in avg_rain dict overrides 'top_n_per_cat': 5 from the comon options dict. Effectively, the above series retrieves the top 2 cities with highest avg_rain in each country/state and top 3 cities with highest avg_temp in each country/state.

A single PivotDataPool can hold data from multiple Models. If there are more models or QuerySets to retrieve the data from, just add more dicts to the series list with different source values.

Warning

The keys for the terms must be unique across all the dictionaries in the series list! If there are multiple terms with same key, the latter ones will just overwrite the previous ones.

For instance, the following example is wrong.

[{'options': {
    'source': EuropeWeather.objects.all(),
    'categories': ['country', 'state']},
  'terms': {
    'avg_temp': Avg('temperature')}},
 {'options': {
     'source': AsiaWeather.objects.all(),
     'categories': ['country', 'state']},
  'terms': {
    'avg_temp': Avg('temperature')}}]

The second avg_temp will overwrite the first one. Instead just use different names for each of the keys in all the dictionaries. Here is the right format.

[{'options': {
    'source': EuropeWeather.objects.all(),
    'categories': ['country', 'state']},
  'terms': {
    'europe_avg_temp': Avg('temperature')}},
 {'options': {
     'source': AsiaWeather.objects.all(),
     'categories': ['country', 'state']},
  'terms': {
    'asia_avg_temp': Avg('temperature')}}]
__module__ = 'chartit.chartdata'
_generate_vqs()

Generates and yields the value query set for each query in the query group.

_get_data()
chartit.charts module
class chartit.charts.BaseChart

Bases: object

Common ancestor class for all charts to avoid code duplication.

__dict__ = mappingproxy({'__dict__': <attribute '__dict__' of 'BaseChart' objects>, '__weakref__': <attribute '__weakref__' of 'BaseChart' objects>, '__module__': 'chartit.charts', '__doc__': '\n Common ancestor class for all charts to avoid code duplication.\n ', '__init__': <function BaseChart.__init__>, 'to_json': <function BaseChart.to_json>})
__init__()
__module__ = 'chartit.charts'
__weakref__

list of weak references to the object (if defined)

to_json()

Load Chart’s data as JSON Useful in Ajax requests. Example:

Return JSON from this method and response to client:

return JsonResponse(cht.to_json(), safe=False)

Then use jQuery load data and create Highchart:

$(function(){
$.getJSON("/data",function(data){
    $('#container').highcharts(JSON.parse(data));
    });
});
class chartit.charts.Chart(datasource, series_options, chart_options=None, x_sortf_mapf_mts=None)

Bases: chartit.charts.BaseChart

__init__(datasource, series_options, chart_options=None, x_sortf_mapf_mts=None)

Chart accept the datasource and some options to create the chart and creates it.

Arguments:

  • datasource (required) - a DataPool object that holds the terms and other information to plot the chart from.

  • series_options (required) - specifies the options to plot the terms on the chart. It is of the form

    [{'options': {
        #any items from HighChart series. For ex.,
        'type': 'column'
       },
       'terms': {
         'x_name': ['y_name',
                    {'other_y_name': {
                       #overriding options}},
                    ...],
         ...
         },
       },
      ... #repeat dicts with 'options' & 'terms'
      ]
    

    Where -

    • options (required) - a dict. Any of the parameters from the Highcharts options object - series array are valid as entries in the options dict except data (because data array is generated from your datasource by chartit). For example, type, xAxis, etc. are all valid entries here.

      Note

      The items supplied in the options dict are not validated to make sure that Highcharts actually supports them. Any invalid options are just passed to Highcharts JS which silently ignores them.

    • terms (required) - a dict. keys are the x-axis terms and the values are lists of y-axis terms for that particular x-axis term. Both x-axis and y-axis terms must be present in the corresponding datasource, otherwise an APIInputError is raised.

      The entries in the y-axis terms list must either be a str or a dict. If entries are dicts, the keys need to be valid y-term names and the values need to be any options to override the default options. For example,

      [{'options': {
          'type': 'column',
          'yAxis': 0},
        'terms': {
          'city': [
            'temperature',
           {'rainfall': {
              'type': 'line',
              'yAxis': 1}}]}}]
      

      plots a column chart of city vs. temperature as a line chart on yAxis: 0 and city vs. rainfall as a line chart on yAxis: 1. This can alternatively be expressed as two separate entries:

      [{'options': {
          'type': 'column',
          'yAxis': 0},
        'terms': {
          'city': [
            'temperature']}},
       {'options': {
          'type': 'line',
          'yAxis': 1},
        'terms': {
          'city': [
            'rainfall']}}]
      
  • chart_options (optional) - a dict. Any of the options from the Highcharts options object are valid (except the options in the series array which are passed in the series_options argument. The following chart_options for example, set the chart title and the axes titles.

    {'chart': {
       'title': {
         'text': 'Weather Chart'}},
     'xAxis': {
       'title': 'month'},
     'yAxis': {
       'title': 'temperature'}}
    

    Note

    The items supplied in the chart_options dict are not validated to make sure that Highcharts actually supports them. Any invalid options are just passed to Highcharts JS which silently ignores them.

Raises:

  • APIInputError if any of the terms are not present in the corresponding datasource or if the series_options cannot be parsed.
__module__ = 'chartit.charts'
_groupby_x_axis_and_vqs()

Here is an example of what this function would return

{
    0: {
        0: {'month_seattle': ['seattle_temp']},
        1: {'month': ['houston_temp', 'boston_temp']}
    }
}

In the above example,

  • the inner most dict keys (‘month’ and ‘month_seattle’) are on the same xAxis (xAxis 0), just groupped in 2 groups (0 and 1)
  • the inner most list values are from same ValueQuerySet (table)

If you decide to display multiple chart types with multiple axes then the return value will look like this

{
    0: {
        0: {'month': ['boston_temp']}
    },
    1: {
        0: {'month': ['houston_temp']}
    }
}
  • the outer most 0 and 1 are the numbers of the x axes
  • the inner most 0 shows that each axis has 1 data group
_set_default_hcoptions(chart_options)

Set some default options, like xAxis title, yAxis title, chart title, etc.

generate_plot()
class chartit.charts.PivotChart(datasource, series_options, chart_options=None)

Bases: chartit.charts.BaseChart

__init__(datasource, series_options, chart_options=None)

Creates the PivotChart object.

Arguments:

  • datasource (required) - a PivotDataPool object that holds the terms and other information to plot the chart from.

  • series_options (required) - specifies the options to plot the terms on the chart. It is of the form

    [{'options': {
        #any items from HighChart series. For ex.
        'type': 'column'
        },
      'terms': [
        'a_valid_term',
        'other_valid_term': {
          #any options to override. For ex.
         'type': 'area',
          ...
          },
        ...
        ]
      },
      ... #repeat dicts with 'options' & 'terms'
      ]
    

    Where -

    • options (required) - a dict. Any of the parameters from the Highcharts options object - series array are valid as entries in the options dict except data (because data array is generated from your datasource by chartit). For example, type, xAxis, etc. are all valid entries here.

      Note

      The items supplied in the options dict are not validated to make sure that Highcharts actually supports them. Any invalid options are just passed to Highcharts JS which silently ignores them.

    • terms (required) - a list. Only terms that are present in the corresponding datasource are valid.

      Note

      All the terms are plotted on the y-axis. The categories of the datasource are plotted on the x-axis. There is no option to override this.

      Each of the terms must either be a str or a dict. If entries are dicts, the keys need to be valid terms and the values need to be any options to override the default options. For example,

      [{'options': {
          'type': 'column',
          'yAxis': 0},
        'terms': [
          'temperature',
          {'rainfall': {
              'type': 'line',
              'yAxis': 1}}]}]
      

      plots a pivot column chart of temperature on yAxis: 0 and a line pivot chart of rainfall on yAxis: 1. This can alternatively be expressed as two separate entries:

      [{'options': {
          'type': 'column',
          'yAxis': 0},
        'terms': [
            'temperature']},
       {'options': {
          'type': 'line',
          'yAxis': 1},
        'terms': [
            'rainfall']}]
      
  • chart_options (optional) - a dict. Any of the options from the Highcharts options object are valid (except the options in the series array which are passed in the series_options argument. The following chart_options for example, set the chart title and the axes titles.

    {'chart': {
       'title': {
         'text': 'Weather Chart'}},
     'xAxis': {
       'title': 'month'},
     'yAxis': {
       'title': 'temperature'}}
    

    Note

    The items supplied in the chart_options dict are not validated to make sure that Highcharts actually supports them. Any invalid options are just passed to Highcharts JS which silently ignores them.

Raises:

  • APIInputError if any of the terms are not present in the corresponding datasource or if the series_options cannot be parsed.
__module__ = 'chartit.charts'
generate_plot()
set_default_hcoptions()
chartit.exceptions module

Global ChartIt exception and warning classes.

exception chartit.exceptions.APIInputError

Bases: Exception

Some kind of problem when validating the user input.

__module__ = 'chartit.exceptions'
__weakref__

list of weak references to the object (if defined)

chartit.utils module

utility and helper functions.

class chartit.utils.RecursiveDefaultDict(data=None)

Bases: dict

Behaves exactly the same as a collections.defaultdict but works with pickle.loads. Fixes #10.

__dict__ = mappingproxy({'__dict__': <attribute '__dict__' of 'RecursiveDefaultDict' objects>, '__weakref__': <attribute '__weakref__' of 'RecursiveDefaultDict' objects>, '__getitem__': <function RecursiveDefaultDict.__getitem__>, 'update': <function RecursiveDefaultDict.update>, '__doc__': '\n Behaves exactly the same as a collections.defaultdict\n but works with pickle.loads. Fixes #10.\n ', '__setitem__': <function RecursiveDefaultDict.__setitem__>, '__init__': <function RecursiveDefaultDict.__init__>, '__module__': 'chartit.utils'})
__getitem__(key)
__init__(data=None)
__module__ = 'chartit.utils'
__setitem__(key, item)
__weakref__

list of weak references to the object (if defined)

update(element)
chartit.utils._convert_to_rdd(obj)

Accepts a dict or a list of dicts and converts it to a RecursiveDefaultDict.

chartit.utils._getattr(obj, attr)

Recurses through an attribute chain to get the ultimate value.

chartit.validation module

Validates input parameters.

chartit.validation._clean_categories(categories, source)
chartit.validation._clean_field_aliases(fa_actual, fa_cat, fa_lgby)
chartit.validation._clean_legend_by(legend_by, source)
chartit.validation._clean_source(source)
chartit.validation._convert_cso_to_dict(series_options)
chartit.validation._convert_dps_to_dict(series_list)
chartit.validation._convert_pcso_to_dict(series_options)
chartit.validation._convert_pdps_to_dict(series_list)
chartit.validation._validate_field_lookup_term(model, term, query)

Checks whether the term is a valid field_lookup for the model.

Args:

  • model (required) - a django model for which to check whether the term is a valid field_lookup.
  • term (required) - the term to check whether it is a valid field lookup for the model supplied.
  • query - the source query so we can check for aggregate or extra fields.

Returns:

  • The verbose name of the field if the supplied term is a valid field.

Raises:

  • APIInputError: If the term supplied is not a valid field lookup parameter for the model.
chartit.validation._validate_func(func)
chartit.validation._validate_top_n_per_cat(top_n_per_cat)
chartit.validation.clean_cso(series_options, ds)

Clean the Chart series_options input from the user.

chartit.validation.clean_dps(series)

Clean the DataPool series input from the user.

chartit.validation.clean_pcso(series_options, ds)

Clean the PivotChart series_options input from the user.

chartit.validation.clean_pdps(series)

Clean the PivotDataPool series input from the user.

chartit.validation.clean_sortf_mapf_mts(sortf_mapf_mts)
chartit.validation.clean_x_sortf_mapf_mts(x_sortf_mapf_mts)
chartit.validation.get_all_field_names(meta)

Taken from Django 1.9.8 b/c this is unofficial API which has been deprecated in 1.10.

Module contents

This Django application can be used to create charts and pivot charts directly from models.

License

  • Copyright (c) 2011, Praveen Gollakota.
  • Copyright (c) 2016, Grant McConnaughey.
  • Copyright (c) 2016, Alexander Todorov.
  • and other contributors.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.